
Highest-performance Stream Processing
Oleg Kiselyov
Tohoku University

Japan
oleg@okmij.org

Tomoaki Kobayashi
Tohoku University

Japan
tomoaki.kobayashi.t3@dc.tohoku.ac.jp

Aggelos Biboudis
Switzerland

biboudis@gmail.com

Nick Palladinos
Nessos IT
Greece

npal@nessos.gr

Abstract
We present the stream processing library that achieves the highest
performance of existing OCaml streaming libraries, attaining the
speed and memory efficiency of hand-written state machines. It
supports finite and infinite streams with the familiar declarative in-
terface, of any combination of map, filter, take(while), drop(while),
zip, flatmap combinators and tupling. Experienced users may use
the lower-level interface of stateful streams and implement accu-
mulating maps, compression and windowing. The library is based
on assured code generation (at present, of OCaml and C) and guar-
antees in all cases complete fusion.

1 Summary
Strymonas is a DSL that generates high-performance single-core
stream processing code from declarative descriptions of stream
pipelines and user actions – something like Yacc. Unlike (ocaml)yacc,
strymonas is an embedded DSL. Therefore, it integrates as is with
the existing OCaml code and tools. Any typing or pipeline mis-
assembling errors are reported immediately (even during editing).

Strymonas statically guarantees complete fusion: if each oper-
ation in a pipeline individually runs without any function calls
and memory allocations, the entire streaming pipeline runs with-
out calls and allocations. Thus strymonas per se introduces not
even constant-size intermediary data structures. Complete fusion is
mainly the space guarantee: the ability to run the processing loop
without any GC or even stack allocations. Still, avoiding closures
and the repeated construction/disposal of tuples, option values, etc.
notably improves performance, in our experience.

The present strymonas is the completely re-written and themuch
extended and improved version of the library described [Kiselyov
et al. 2017]. The main differences are:

• Generated code is not only OCaml but also C. The latter
needs no OCaml runtime and can be automatically vector-
ized.

• The core of strymonas – stream representation and fusion –
is now pure OCaml, with code generation relegated to a
backend. MetaOCaml is needed only for the OCaml-code–
generation backend – but not for the C backend. Users may
develop their own backends by implementing a specific sig-
nature.

• Stream fusion is now achieved in all cases. In [Kiselyov et al.
2017], complicated zipping pipelines did not fuse completely.

• To guarantee the complete fusion in all cases, including com-
plicated zip pipelines, the library was completely re-written,
using a different fusion approach based on normalization-
by-evaluation.

• The library is structured as the low-level core interface of
stafeful streams upon which the familiar declarative com-
binators are implemented. The core interface can be used
directly, to write stream processing that depends not only
on the current but past stream elements – such as signal-
processing filtering, windowing, compression. One may
freely mix the two interfaces in the same pipeline.

• The low-level interface supports streams not only over base
types (integers, strings, floats) but also over tuples, records
and even abstract data types. The example of the latter is
windowing.

1.1 Backends
Semantic actions – stream mapping, filtering, accumulating, etc.
functions – are expressed in another embedded DSL, called a back-
end. Strymonas currently provides two implementations of the DSL
(with the identical interface): OCaml and C.1 We are considering
WASM and LLVM IR backends.

The OCaml backend is based on MetaOCaml and extends the
common backend interface to permit arbitrary OCaml code (en-
closed in MetaOCaml brackets) as semantic actions.2 On the other
hand, the C backend is pure OCaml: MetaOCaml installation is not
needed. No other dependencies are needed either. The C backend
uses the tagless-final–based approach described in [Kiselyov 2022].
Thanks to tagless-final, the backends are extensible. Either backend
generates code that is statically assured to compile without errors
or warnings.

2 A Taste of Strymonas
Strymonas may be thought of as Yacc for stream processing – but
embedded rather than standalone. Here is the simplest example
(for clarity, we explicitly write type annotations although none are
needed):

let ex1 : int cstream = iota C.(int 1) ⊲ map C.(fun e→ e ∗ e)

Like Yacc, strymonas uses two languages: one to describe the struc-
ture of the stream pipeline, and the other to specify the semantic
actions such as mapping transformations, etc. Since strymonas is
an embedded DSL, both languages are represented by OCaml func-
tions (combinators), but from two different namespaces (signatures).
Stream structure combinators such as iota and map produce, con-
sume, or transform values of the type 𝛼 cstream, where 𝛼 is a base

1Actually, there are four backends: basic OCaml, basic C, and the backends obtained
by applying a partial-evaluation functor to any backend.
2If such an extensibility is not needed, the OCaml backend can be implemented in
pure OCaml: that is, without MetaOCaml.

1

Oleg Kiselyov, Tomoaki Kobayashi, Aggelos Biboudis, and Nick Palladinos

type.3 The iota combinator produces an infinite stream of numbers
starting with the given one; map should be self-explanatory. The
combinators are typically composed via ⊲: the right-to-left appli-
cation operator. Semantic actions (i.e., the arguments of stream
combinators) are described via backend combinators, which build
values of the abstract type 𝛼 cde representing the target code: C,
OCaml, etc.4 We shall assume one such backend in scope, as the
module named C.

The ex1 pipeline is the infinite stream of natural numbers trans-
formed by squaring each item. The pipeline is completed by termi-
nating it by an int cstream consumer, such as fold, or its instance
sum below (strymonas already provides this combinator, under the
name sum_int):

let sum : int cstream→ int cde = fold C.(+) C.(int 0)
let ex2 : int cde =
ex1 ⊲ filter C.(fun e → emod (int 17) > int 7)

⊲ take C.(int 10) ⊲ sum

We added to ex1 two more transformations, to retain only those
items whose remainder mod 17 exceeds 7, and take first 10 such
items. The resulting stream becomes finite and can be meaning-
fully summed up. Here ex2 is the int cde value representing the
integer-producing target code for the complete pipeline, including
stream generation, folding, and the user actions of squaring, etc.
The backend that realizes 𝛼 cde as OCaml code lets us pretty-print
this code:

let v_1 = ref 0 in let v_2 = ref 10 in let v_3 = ref 1 in
while (! v_2) > 0 do
let t_4 = ! v_3 in incr v_3;
let t_5 = t_4 ∗ t_4 in
if (t_5mod 17) > 7 then (decr v_2; v_1 := ! v_1 + t_5)

done;
! v_1

The code can also be saved into a file, compiled, put into a library –
or it can be run right away: dynamically linked into the program
that generated it and invoked. With the C back-end, the resulting
code is (some newlines are removed for compactness):

int fn()
{ int v_1 = 0; int v_2 = 10; int v_3 = 1;
while (v_2 > 0)
{ int t_4; int t_5;
t_4 = v_3;
v_3++; t_5 = t_4 ∗ t_4;
if ((t_5 % 17) > 7) { v_2−−; v_1 = v_1 + t_5; }

}
return v_1;}

This is what a competent programmer would have written by hand.
Although the pipeline is purely declarative, with first-class (the
argument of filter) and higher-order functions, the generated code
is imperative and has no function calls. The main loops runs with
no GC, even in OCaml.

3In a lower-level strymonas interface, stream elements are not restricted to base types.
4Thus 𝛼 cde is an abstract, backend-independent representation of the generated code,
which may not even be an OCaml code – and hence different from MetaOCaml’s 𝛼
code. MetaOCaml may not be needed, depending on the chosen backend.

The second example is the pipeline to compute the dot-product
of two arrays:

let ex_dot (arr1:int array cde,arr2:int array cde) : int cde =
zip_with C.(∗) (of_arr arr1) (of_arr arr2) ⊲ sum

The combinator of_arr creates a finite stream whose contents is the
given target language array. With the OCaml backend we generate:

fun (arg1_24, arg2_25)→
let t_26 = (Array.length arg2_25) − 1 in
let t_27 = (Array.length arg1_24) − 1 in
let v_28 = ref 0 in
for i_29 = 0 to if t_27 < t_26 then t_27 else t_26 do
let el_30 = Array.get arg1_24 i_29 in
let el_31 = Array.get arg2_25 i_29 in
v_28 := (! v_28) + (el_30 ∗ el_31)

done;
! v_28

Incidentally, zip_with f appearing in ex_dot is defined in strymonas
as zip ▷ map (fun (x,y) → f x y) where ▷ is left-to-right function
composition. A naive implementation would construct a tuple in
zip, to be deconstructed in the subsequent mapping. The strymonas-
generated code however clearly has no tuples.

3 Evaluation
We evaluated strymonas on the set of micro-benchmarks borrowed
from [Kiselyov et al. 2017], to which we added ZipFilterFilter,
ZipFlatMapFlatMap (that is, zipping of two streams each containing
a filter, resp., flatmap operation) and runLengthDecoding bench-
marks. Fig. 1 presents the results. Baseline is the hand-written,
hand-fused imperative (state-machine) code for the entire pipeline,
with no closures or thunks: what a competent programmer would
write to achieve best performance. Streaming5 is one of the fastest
streaming libraries in OCaml; it does not support all the benchmark
cases however. We also compare against Seq in the OCaml standard
library, and the iter library.

We have also implemented larger applications/benchmarks, such
as FM Radio reception. The generated C code, which compiles to
fully vectorized machine code, has the performance to sustain real-
time reception.

References
Oleg Kiselyov. Generating C. InMichael Hanus andAtsushi Igarashi, editors, Functional

and Logic Programming, volume 13215 of Lecture Notes in Computer Science, pages
75–93. Springer International Publishing, 2022. doi: 10.1007/978-3-030-99461-7_5.

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Stream
fusion, to completeness. In POPL ’17: Conference Record of the Annual ACM Sympo-
sium on Principles of Programming Languages, pages 285–299, New York, January
2017. ACM Press. ISBN 978-1-4503-4660-3. doi: 10.1145/3009837.

5https://github.com/odis-labs/streaming

2

https://github.com/odis-labs/streaming

Highest-performance Stream Processing

Figure 1. Benchmarking against the baseline, ‘Seq’, ‘iter’, and ‘streaming’: the running time in milliseconds per iteration (avg. of 20, with
mean-error bars shown). Shorter bars are better. To better show the details, the figure is truncated: the per-iteration running time of Seq
on mapsMegamorphic is 7 sec, filtersMegamorphic 4 sec, zipFlatMapFlatMap 14 sec and runLengthDecoding 37 sec. The running time of
streaming on mapsMegamorphic is 3.7 sec, on filtersMegamorphic is 2.4 sec. The evaluation platform is 1.8 GHz dualcore Intel Core i5, 8 GB
DDR3 main memory, macOS Big Sur 11.6.

3

	Abstract
	1 Summary
	1.1 Backends

	2 A Taste of Strymonas
	3 Evaluation
	References

